Free Vibrations of Twisted Plates with Thickness Varying in Two Directions.

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thickness Stretch Vibrations of Piezoelectric Ceramic Plates for Resonator Applications

The thickness stretch vibrations of piezoelectric ceramic plates are analyzed by solving the first-order Mindlin plate equations with finite element method in the twodimensional domain. The precise resonance frequency and distribution of displacements are obtained from the analysis in detail. The results based on the two-dimensional solutions are more important particularly in the evaluation of...

متن کامل

Theoretical, numerical, and experimental analyses of free vibrations of glass fiber reinforced polymer plates with central cutouts and free boundaries

This study explored the free vibration problem in relation to glass fiber reinforced polymer (GFRP) plates with central cutouts and free boundaries using theoretical, experimental, and numerical methods. The theoretical formulations were derived from the classical lamination plate theory. The rectangular cutout was mathematically modeled into the stiffness matrix of the plate by multiplying Hea...

متن کامل

Closed form solutions for free vibrations of rectangular Mindlin plates

A new two-eigenfunctions theory, using the amplitude deflection and the generalized curvature as two fundamental eigenfunctions, is proposed for the free vibration solutions of a rectangular Mindlin plate. The three classical eigenvalue differential equations of a Mindlin plate are reformulated to arrive at two new eigenvalue differential equations for the proposed theory. The closed form eigen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series C

سال: 1993

ISSN: 0387-5024,1884-8354

DOI: 10.1299/kikaic.59.1606